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Chapter 10

Boosting and Additive Trees

Derivation of Adaboost

[2][3]
Let F denote the set of all weak classifiers, where each weak classifier is a mapping from

the space of measurement X to the binary label {�1, 1}. Let us further denote lin{F} as the set
of all linear combinations of the functions in F . Note that the codomain of F 2 lin{F} is no
longer restricted to be {�1, 1}, as in general it can take any value in R.

For any F 2 lin{F}, we define a cost function cost(F ) =
P

m

i=1 e
�yiF (xi), where {(x1, y1),

(x2, y2) , . . . , (xm, ym)} is the set of all training samples expressed in the form of (measurement,
label) pairs. For each measurement x 2 X, we can view |F (x)| as the amount of belief that the
label of x is sign(F (x))1, and thus we can view cost(F ) as the penalty caused by the deviation
of the belief F induced on the training samples and their true labels. Then, it makes sense to
focus on the problem of finding F 2 lin{F} with minimum cost(F ). Next, we will introduce a
greedy iterative approach to obtain a sub-optimal solution to the problem, and it will become
clear later that the approach is the AdaBoost algorithm.

Assume that the algorithm works in iterations, and after the tth iteration, we obtain a func-
tion Ft 2 lin{F}, which can be expressed as Ft = ↵1f1 +↵2f2 + . . . ,↵tft with f1, f2, . . . , ft 2 F

and ↵1,↵2, . . . ,↵t 2 R. In the (t + 1)th iteration, Let us try to find a (↵, f) 2 R ⇥ F pair such
that cost(Ft + ↵f) is smaller than cost(Ft).

cost(Ft + ↵f)� cost(Ft)

=
mX

i=1

e�yiFt(xi)e�yi↵f(xi) �

mX

i=1

e�yiFt(xi)

=
mX

i=1

e�yiFt(xi)
⇣
1� ↵yif(xi)e

�yi↵f(xi) + o(↵2)
⌘
�

mX

i=1

e�yiFt(xi)

=
mX

i=1

↵ (�yif(xi)) e
�yi↵f(xi)e�yiFt(xi) + o(↵2)

1sign(a) = 1 if a > 0 and sign(a) = �1 if a < 0
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Note that (�yif(xi)) = 1 if yi 6= f(xi) and (�yif(xi)) = �1 if yi = f(xi), and thus we can
rewrite the above equation as

X

i:yi 6=f(xi)

↵e�yi↵f(xi)e�yiFt(xi) �
X

i:yi=f(xi)

↵e�yi↵f(xi)e�yiFt(xi) + o(↵2)

=
X

i:yi 6=f(xi)

↵e↵e�yiFt(xi) �
X

i:yi=f(xi)

↵e�↵e�yiFt(xi) + o(↵2)

=↵(e↵ + e�↵)
X

i:yi 6=f(xi)

e�yiFt(xi) � ↵e�↵

mX

i=1

e�yiFt(xi) + o(↵2)

=↵e�↵

 
mX

i=1

e�yiFt(xi)

!0

@e↵ + e�↵

e�↵

X

i:yi 6=f(xi)

e�yiFt(xi)

P
m

j=1 e
�yjFt(xj)

� 1

1

A+ o(↵2) (10.1)

From the above equation, we know that if we fixed the alpha to be very small, then the desired
f we are looking for (denoted as ft+1) should be the one that mininize the difference in the
cost. More precisely,

ft+1 = argmin
f2F

mX

i=1

1 [yi 6= f(xi)]
e�yiFt(xi)

P
m

j=1 e
�yjFt(xj)

. (10.2)

Moreover, from Equation (10.1), in order to drive the cost in the descent direction, we should
have

✏t+1 , min
f2F

mX

i=1

1 [yi 6= f(xi)]
e�yiFt(xi)

P
m

j=1 e
�yjFt(xj)

< 1/2. (10.3)

Now that we know how to find ft+1 2 F which gives the steepest descent in the cost when ↵ is
very small, the next step is to find ↵t which yield the largest descent when the direction is fixed
to ft+1. Such a ↵t can be found by simply taking the derivative of cost(Ft + ↵ft+1) over ↵ and
enforce it to be zero.

dcost(Ft + ↵ft+1)

d↵
=�

mX

i=1

e�yiFt(xi)yift+1(xi)e
�yi↵ft+1(xi) = 0

=) e2↵t+1 =

P
m

i=1 1 [ft+1(xi) = yi] e�yiFt(xi)

P
m

i=1 1 [ft+1(xi) 6= yi] e�yiFt(xi)

=) ↵t+1 =
1

2
log

✓
1� ✏t+1

✏t+1

◆

where ✏t+1 is defined in Equation (10.3)

Exercise 10.1

The updated exponential lose when Gm is plugged in to the Additive Model is expressed as

(e� � e��)
NX

i=1

w(m)
i

I(yi 6= G(xi)) + e��

NX

i=1

w(m)
i

=
NX

i=1

w(m)
i

h
e�err � e��err + e��

i
.

http://www.yangyang1987.info/supervisedlearning.html
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Taking the derivative of the term within the square bracket and enforcing it to be zero, we
obtain

e�err + e��err � e�� = 0

)e2� =
1� err

err
) � =

1

2
log

1� err
err

.

Exercise 10.2

Let us rewrite f(x) as fx to emphasis that we are working on a fixed x.

E
h
eY fx

i

Y |x

= P (Y = 1|X) e�fx + P (Y = �1|X) efx .

The fx that minimizes the above term is

�P (Y = 1|X) e�f
⇤
x + P (Y = �1|X) ef

⇤
x = 0 ) f⇤

x =
1

2

P (Y = 1|X)

P (Y = �1|X)
.

http://www.yangyang1987.info/supervisedlearning.html
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