
�: This is true only for continuous distri-
butions, which is the focus of this chapter.
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The basic idea underlying normalizing flow is to transform simple
fixed distributions into flexible ones through learned differentiable and
invertible�

�: Invertible mapping is also called bĳec-
tive function, bĳection, or one-to-one cor-
respondence.

mappings. The simple distribution is often referred to as base
distribution, and it has the following two properties:

�. It is easy to sample from.
�. Exact density can be evaluated for any sample given to it.

One example for such a distribution is multi-variant standard Gaussian:
sampling is independent across different dimensions and is available in
many scientific software libraries; its probability density function has a
closed-form and can thus be easily evaluated.

Let Z denote the random variable with the base distribution. A new
random variable X can be built by passing Z through a deterministic
function 6, captured by a neural network with parameter .

X , 6 (Z) .

It turns out, if 6 is differentiable and invertible, both of the aforementioned
properties carry over to X. In other words, if we know how to sample
from Z and evaluate the exact density of Z, then we can sample from and
evaluate density for X as well. We can think of this differentiable and
invertible mapping as a bridge, which allows the two properties to be
transferred from Z to X, and it is straightforward to chain multiple such
bridges into a single one.

One important note is that X and Z must have the same dimension� for
there to be a differentiable and invertible mapping between the two. In
other words, there is no dimension reduction as we go from X to Z or the
other way around.

In Section �.�, we formalize the link between X and Z through the change
of variables formula. In Section �.�, we discuss two types of applications
of normalizing flows: density evaluation and sampling with density, and
make the observation that in either case we only need to evaluate the
invertible mapping in one direction. In Section �.� and Section �.�, we
cover basic building blocks of normalizing flow networks and elements
of network architecture design. Lastly we go over Neural ODE-based
normalizing flows in Section �.� and summarize this chapter in Section
�.�.

�.� Change of variables

Let us define a multi-variant random variable X as X , 6(Z), where Z
is a multi-variant random variable with closed-form density function ?Z,

https://yyang768osu.github.io/
https://jongharyu.github.io/
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Figure �.�: Geometric interpretation of���det
⇣
J
5
(x)

⌘���, the absolute value of the de-
terminant of the Jacobian matrix: it repre-
sents a local and linearized rate of volume
change around point x.

and 6 is a differentiable and invertible mapping with inverse denoted
as 5 , 6

�1
 . The goal of this section to express the density of X as a

function of ?Z and 6.

One invariance property as we link two random variables X and Z
through an invertible mapping is that the probability mass of Z in any
area � must remain unchanged after the mapping, or more precisely,

π
6(�)

?X(x)3x =
π
�

?Z(z)3z, or, equivalently,
π
⌫

?X(x)3x =
π
5(⌫)

?Z(z)3z, for any area ⌫. (�.�)

To gain a geometric intuition, let us focus on the case when X and Z are
two-dimensional. Consider the case when ⌫ is a rectangular area with
one corner labeled as x⌫ and two edges with length �G1 and �G2, as
illustrated in left half of Figure �.�. Two approximations can be made
when we �G1 and �G2 become infinitesimally small: (�) the left hand
side of the above equation can be well approximated as ?X(x⌫)�G1�G2;
(�) the continuous function 5(x) on the small rectangle can be well
approximated by its first order Taylor expansion

5(x) ⇡ 5(x⌫) +
"

% 51(x⌫)
%G1

% 51(x⌫)
%G2

% 52(x⌫)
%G1

% 52(x⌫)
%G2

#

|                  {z                  }
J 5 (x⌫)

(x � x⌫).

The matrix in the equation above is the Jacobian�

�: The Jacobian matrix of a vector valued
function 5 = [ 51 , . . . , 5=] with input x =
[G1 , G2 , . . . , G<] is defined as

J
5
=

26666666664

% 51
%G1

% 51
%G2

. . .
% 51
%G<

% 52
%G1

% 52
%G2

. . .
% 52
%G<

.

.

.

.

.

.

.
.
.

.

.

.

% 5=
%G1

% 5=
%G2

. . .
% 5=
%G<

37777777775
.

As mentioned before, if 5 is an invertible
function, its input and output should have
the same dimension. Therefore in the case
of normalizing flows, the Jacobian is al-
ways a square matrix. The matrix itself is
a function of x.of function 5 evaluated

at point x⌫, hereafter denoted as J 5 (x⌫). Analogous to the interpretation
of gradient in the case of a scalar-valued function, Jacobian represents
the first-order linear and localized rate of change of a vector-valued
function.

With this approximated linear transform, the rectangular area ⌫ is
mapped to a parallelogram as illustrated in right part of Figure �.�. One
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�: Denoted as det(·)

�: Step (a) holds in asymptotic sense when
�G1 and �G2 approaches 0.

geometric property is that the area of the parallelogram equals to the
absolute determinant� of the Jacobian matrix times the area of ⌫:

Area (⌫) = �G1�G2

Area
�
5 (⌫)� = ��det

�
J 5 (x⌫)

� ���G1�G2.

This allows us to rewrite Equation �.� as � :
π
⌫

?X(x)3x =
π
5(⌫)

?Z(z)3z

(0)) ?X(x⌫) ⇥ Area (⌫) =?Z( 5 (x⌫)) ⇥ Area
�
5 (⌫)�

) ?X(x⌫)�G1�G2 =?Z( 5 (x⌫))
��det

�
J 5 (x⌫)

� ���G1�G2

) ?X(x⌫) =?Z( 5 (x⌫))
��det

�
J 5 (x⌫)

� ��
.

Note how �G1�G2 cancels out and the final equation becomes an expres-
sion of density of x⌫. Since the choice of the rectangular area ⌫ and x⌫ is
arbitrary, this is the general rule, formally known as the the change of
formula.

We motivated the change of variable equa-
tion with �-dimensional random variable
but the result generalizes to arbitrary di-
mension.

Proposition �.�.� (Change of variable formula for probability density
function) For X , 6 (Z) where 6(·) is a differentiable invertible function
with inverse 5 = 6

�1, the density of X can be expressed as

?X(x) =?Z(z)
��det

�
J 5 (x)

� ��
, or equivalently,

?X(x) =?Z(z)
��det

�
J6(z)

� ���1
,

where x = 6(z), z = 5 (x).

As illustrated in Figure �.�, |det(J 5 (x))| represents a linearized rate of
volume expansion around a local neighborhood of x. With this interpre-
tation in mind, the following two properties of determinant Jacobian
should make intuitive sense, which we state without proof.

(�) The inverse of the determinant Jacobian is the determinant Jacobian
of the inverse function.

This follows by the fact that the matrix
inverse of the Jacobian is the Jacobian of
the inverse function.

J
5
(x) = J6(z)�1

, for z = 5 (x), x = 6(z).

The inverse sign on the right hand side
denotes a matrix inverse.

det
�
J 5 (x)

�
= det

�
J6(z)

��1
, for z = 5 (x), x = 6(z).

This agrees with the intuition that the rate of localized volume expansion
from x to z = 5 (x) should be the same the rate of localized volume
contraction from z to x = 6(z).
(�) The determinant Jacobian of a composite function is the product of
the determinant Jacobians of the composed functions.

This follows from chain rule of Jacobian
for multi-variant functions, a generaliza-
tion of chain rule of derivative for scalar
functions.

J
5 �⌘(x) = J

5
(y) ⇥ J

⌘
(x)

The right hand side is a matrix multiplica-
tion.

det(J 5 �⌘(x)) = det(J 5 (y)) ⇥ det(J⌘(x)), for y = ⌘(x), z = 5 (y)

Again, this is consistent with the intuition that rate of localized volume
expansion is multiplicative.

As we will discuss in Section �.�, the second property provides us a
way to build complex distributions using simple non-linear invertible
functions. It enables us to focus on the design of elementary parametrized
invertible layers with tractable determinant Jacobian, knowing that more
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Figure �.�: Density evaluation. There is no
evaluation of 6 so it can be left implicit.

expressive invertible transforms can be built by simply stacking these
basic building blocks.

Before introducing basic building blocks in Section �.�, we first need to
understand what types of applications that normalizing flow are used
for, as well as their implications on the design, which is covered next.

�.� Two classes of applications

Not all invertible functions admit an explicit-form inverse. For instance,
a simple scalar function 5 (G) = G4

G is invertible on R+, but it does
not have an analytical inverse�

�: The inverse of 5 (G) = G4
G is known as

Lambert W function, which cannot be ex-
pressed in terms of elementary functions.. In other words, invertibility does not

imply tractability. In the design of invertible neural network, we face the
choice of whether to build invertible functions that are tractable in both
directions, or to give up tractability in one direction in exchange for more
flexibilities of the transform.

There is a fundamental trade-off between expressiveness and tractability
in the design of the invertible functions used for normalizing flows. On
the one hand, for efficient training or inference, it is desirable to have
functions that are easy to compute, which demands tractability. On the
other hand, we want to optimize a larger function class, which can be
done by lifting the tractability constraint.

Fortunately, depending on the problem that we are interested in, we do
not necessarily need to build functions that are tractable in both directions.
Specifically, if we just want to use the model to evaluate density of a data
sample x, then we only need to evaluate 5 together with its determinant
Jacobian. If instead we are interested in getting samples from the modeled
distribution ?X and know the density associated with the samples, then
we only need to evaluate 6 together with its determinant Jacobian. We
elaborate these two points in the following two subsections.

For notational clarity, for the rest of the chapter, we use subscript  in
5, 6 to represent learnable parameters of the invertible functions, and
replace ?X with ? to highlight the fact that the modeled distribution X
is parametrized by 5 or 6 through the change of variable formula.

�.�.� density evaluation

In the problem of density evaluation, we are given a set of samples {xi}
from some known distribution, and the task is to find the density of these
samples with respect to the distribution captured by normalizing flow
models. This problem arises in optimization problems that admit the
following objective

Ex⇠@X

⇥
⌘

�
?(x), x

� ⇤
, (�.�)

where @X is given and there is known way to sample from it, and ⌘(·)
denotes an arbitrary function. One common instance of such optimization
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�: This is often written in log-density
form as

log ?(x) = log ?Z
�
5(x)

�
+ log

��det �
5 (G)

��

Figure �.�: Sampling with density. There
is no need to evaluate 5 so it can be left
implicit.

objective is the KL divergence from ? relative to a fixed distribution @X:
�

�
@X

�
, �

Ø
x @X(x) log @X(x) denotes the

differential entropy of @X and is a constant
if @X is a fixed distribution.

⇡KL(@X | |?) =Ex⇠@X


log 1

?(x)

�
� � �

@X
�

⇡ 1
#

#X
8=1

xi⇠@X

log 1
?(xi)

+ Constant.

One distinct characteristic of this type of problem is that sampling of x
is driven by some other distribution (in the case of the above example,
@X), and we just need to evaluate the log density of such samples with
respect to the model distribution ?. As a concrete example, @X can
be the empirical distribution of a dataset {xi}, in which case the above
term is simply the negative log likelihood objective up to a constant.
Minimization of the above term corresponds to maximum likelihood
training.

By the change of variable formula in Proposition �.�.�, we can express
the density of ? captured by the normalizing flow models as: �

?(x) = ?Z
�
5(x)

� ��det � 5 (G)
��
, (�.�)

which requires the computation 5(G) and det � 5 (G).
An important observation is that in this case, there is no need to evaluate
6. In other words, we do not need to worry about the tractability of 6
if the objective is only to estimate the density of given samples.

�.�.� sampling with density

In this second class of problems there are two tasks – we need to (�) draw
samples {xi} from our modeled distribution ?(G) and at the same time
(�) obtain density of the drawn samples. The typical form of optimization
objective is

Ex⇠?
⇥
⌘

�
?(x), x

� ⇤
. (�.�)

Different from Equation �.�, to evaluate the above term we need to
sample from the modeled distribution ?. One specific instance of the
optimization objective is the KL divergence from @X to ? for some known
distribution @X :�

�: E.g., in the case of variational autoen-
coder, to optimize evidence lower bound,
we need to evaluate the KL divergence
from prior distribution to approximated
posterior distribution

⇡KL(approximated-posterior | |prior)

and we can use normalizing flow to model
the approximated posterior. Specifically,
we can use a bĳection where only 6 (map-
ping from base distribution to target dis-
tribution) is easy to compute [�, �].

⇡KL
�
? | |@X

�
= Ex⇠?


log

?(x)
@X(x)

�
⇡ 1
#

#X
8=1

xi⇠?

log
?(xi)
@X(xi)

.

At first glance, it may appear that task (�) subsumes the first class of
problems – to evaluate the density of the samples ?(xi) inside the
expectation, we need to invoke Equation �.� and map {xi} to {zi}, which
necessitates evaluation of 5. This, however, is not the case.

The subtly here is that as long as the samples {xi} are generated by first
sampling {zi} from ?Z and passing {zi} through 6, their densities can
be computed without evaluating 5. To see this, let us rewrite Equation
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�: Formally this is known as the law of
the unconscious statistician or LOTUS

�.� by explicitly expressing the sampling of x ⇠ ? as the sampling from
the base distribution z ⇠ ?Z followed by mapping through 6�

E z⇠?Z
x=6(z)

⇥
⌘

�
?(x)

� ⇤
= Ez⇠?Z

⇥
⌘

�
?(6(z))

� ⇤
.

We know that ?(6(z)) can be expressed as a function of ?Z(z) and
det �6 (z) through the change of variable formula in Proposition �.�.�

?(6(z)) = ?Z (z)
��det �6 (I)

���1
,

This is often written in log form as

log ?(6(z)) = log ?Z (z)
� log

��det �6 (z)
��
,

which shows that the density of x = 6(z) can be computed by evaluating
6 and det �6 .

Here is how we can interpret this equation. After obtaining a sample
z together its density ?Z(z) from the base distribution, we can map the
sample as well as its density to the target domain with x = 6(z). The
density after the mapping needs to be adjusted taking into account the
degree of contraction or expansion induced by 6 in a local neighborhood
of z, which is captured by

��det �6 (z)
��. If

��det �6 (z)
�� > 1, then 6 maps a

small volume around z to a larger one around x, stretching the density
to be thinner. Conversely, if

��det �6 (z)
�� < 1, then the density get more

concentrated through the mapping 6.

Since there is no need to evaluate 5 = 6
�1(), we do not need to have a

tractable form of 5.

sample without density

As a degenerate scenario, we can also use normalizing flow models
to obtain samples without the need to evaluate the density of such
samples.

z ⇠ %Z , x = 6(z)

This, by itself, however, is not an interesting use-case for normalizing
flows, since it does not require 6 to be invertible and we can instead use
a much more flexible mapping. For example, in generative adversarial
network (GAN) regime, a generator network maps samples from a base
distribution to the target one. Since density evaluation is not needed,
the generator network can be any flexible non-linear transform without
invertibility as its design constraint.

That being said, for models trained with maximum likelihood, where
at training time we need to evaluate 5 and its determinant Jacobian for
density evaluation, sampling through 6 = 5

�1
 is often performed at

inference time as a way to showcase the quality of learned distribution.
Since sampling is not done at training time, we can afford a 6 that is
more computationally expensive to evaluate.

�.�.� Summary

We summarize the two classes of applications and highlight two examples
tasks: maximum likelihood density estimation and variational inference
in Table �.�.
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density evaluation sampling with density

Typical objective Ex⇠@X

⇥
⌘

�
?(x), x

� ⇤
Ex⇠?

⇥
⌘

�
?(x), x

� ⇤
Need to evaluate 5 and det � 5 6 and det �6
Example Max-likelihood training Variational inference

min ⇡KL
�
@X | |?

�
min ⇡KL

�
? | |@X

�
@X: empirical data dist. @X: prior dist.
?: modeled data dist. ?: approx. posterior

Table �.�: Summary of two classes of appli-
cations for normalizing flow. ? denotes
the target distribution modeled by normal-
izing flow. @X denotes a known distribu-
tion. ⌘(·) denotes an arbitrary function.

Figure �.�: Composition of two invertible
layers

�.� Basic building blocks

The main design goal in normalizing flows is to build flexible invertible
mappings using deep neural networks, with the constraint that we need
to be able to evaluate at least one direction of the bĳective mapping as
well as its determinant Jacobian.

Without loss of generality, we focus on the design of the mappings 6
from z to x, knowing that the same design can be used for 5 by just
flipping the notation of input and output. More concretely, we look at
designing neural network based function representations with input
of z and output of 6(z) and det �6 (z). Since the modeled distribution
is invariant to the sign of determinant Jacobian, it is a norm to design
transform with strictly positive determinant Jacobian. Thus, subsequently,
we remove the absolute sign.

The following two function composition properties allow us to break the
problem of end-to-end network design down to the design of relative
simpler invertible layers with limited expressive power, and rely on
stacking multiple layers to achieve desired flexibility.

• a composite of bĳections is also a bĳection
• determinant Jacobian of a composite function is the product of the

determinant Jacobians of the composed functions

For example, if we are given two invertible mappings 61 and 62 , we
know that

62 � 61 , 62

�
61 (·)

�
is a bĳection, and

log
��det �62�61

(z)
�� = log

��det �61
(z)

�� + log
���det �62

�
61 (z)

� ���.
As illustrated in Figure �.�, flexible and deep bĳective networks can be
constructed by stacking layers of basic invertible layers. In the subsequent
sections, we introduce a few popular invertible layer designs and examine
them in the following three aspects.

Invertibility: under what condition is the layer invertible.

Inverse tractability: how easy is it to evaluate the inverse function.

Determinant Jacobian: how to compute the determinant of Jacobian.
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Figure �.�: Affine coupling layer.
Forward direction: from z to x

Figure �.�: Affine coupling layer.
Inverse direction: from x to z)

�.�.� Affine coupling

In an affine coupling layer, input z is split into two parts [z0 , z1]: the first
part is left unchanged x0 = z0 while the second part then goes through
an affine transform x1 = s � z1 + t with the corresponding scaling s and
offset t derived as a learned nonlinear function of the first part z0 .

Since x0 = z0 , it is straightforward to see that in the inverse direction,
s and t can be easily derived using the same nonlinear function as the
forward pass. As long as s is non-zero, the overall function is invertible,
and z1 can be obtained with the inverse of the affine transform. A typical
design is to have s as the output of activation function whose output is
always positive, , such as exponential activation.

Below is the math description of an affine coupling layer. Figure �.� and
Figure �.� illustrate the operation in the forward and inverse direction.

forward inverse
z0 , z1 = split(z) x0 , x1 = split(x)
t, log s = NN(z0) t, log s = NN(x0)
x0 = z0 z0 = x0
x1 = s � z1 + t z1 = (x1 � t)/s
x = concat(x0 , x1) z = concat(z0 , z1)

A desirable property of affine coupling is that its Jacobian matrix has a
lower triangular form, as shown below.

�(z) =
"

%x0
%z0

%x0
%z1

%x1
%z0

%x1
%z1

#
=


I 0
%x1
%z0 diag(s)

�

This allows its determinant to be easily evaluated as the product of its
diagonal terms. The determinant of a lower triangular ma-

trix (or an upper triangular matrix) is the
product of the diagonal entries.

The off-diagonal term %x1
%z0 does not affect the determinant

of the matrix and thus can be ignored.

log |det �(z)| =
X
8

log s8 .

Affine coupling is one instance of a general family of invertible transforms
called coupling layers introduced in [�] [�]: Dinh et al. (����), ‘NICE: Non-linear

Independent Components Estimation’
,

x0 =z0
x1 =⌘ (z1 ,< (z0))

where ⌘ (·) is an invertible mapping with respect to its first argument,
referred to as the coupling law and < (·) is a general function referred
to as coupling function. Affine coupling applies affine transform as the
coupling law hence the name. The degenerated case when the scaling of
the affine coupling is fixed to be 1 is referred as additive coupling. In case of additive coupling, the determi-

nant Jacobian is fixed to be 1, implying that
there is no volume expansion or contrac-
tion induced by the mapping. Transforms
with this property are referred as being
volume-preserving.

A limitation of coupling layer is that part of its input is left unchanged.
To build flexible bĳection we need to stack many of them together while
shuffling the input elements so that elements that are not transformed
in one layer can be modified in some other layer. Therefore, the stack of
coupling layers is always interleaved with layers responsible for shuffling
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Figure �.�: Autoregressive Flow (forward).
Red arrows represent learned functions
parametrized by neural networks.

of input elements. The pattern at which the input elements can be shuffled
is an important design element of coupling layer based normalizing flow
networks.

In the first two initial works that applies affine coupling [�, ��] (NICE
and RealNVP), [z0 , z1] are alternated in between successive layers. [��]
proposes two additional approaches to split input tensor: spatial checker-
board partitioning and channel-wise partitioning. [��] generalizes the
fixed input permutation to a learned �x� convolution, and use it together
with a fixed channel-wise partitioning method. We will go through the
network architecture of [��] in more details in Section �.�.

The properties of affine coupling are summarized in the table below.

Condition for
invertibility

Invertible as long as B8 < 0,88, which is enforced
by using an activation function with strictly positive
outcome, e.g., exp

Tractability
of inverse

forward and inverse can be evaluated with the same
computational complexity

Log determi-
nant Jacobian

Jacobian matrix is lower-triangular, and log det �6 =P
8
log B8

Table �.�: Summary of affine coupling

�.�.� Auto-regressive flow

Auto-regressive flow defines a mapping where each input element I8
goes through an affine transform whose scale B8 and offset C8 are derived
as a learned function of previous elements z<8 . It can be expressed as

x = AF(z) ,
⇢

x = t + s � z (i.e., G8 = C8 + B8 ⇤ I8 ,88),
t, log s = AutoregressiveNN(z).

We use AutoregressiveNN to denote a neural network that takes in a
sequence of data as input and generate a sequence of outputs, with the
property that the 8th output element does not depend on 8th input or any
input that appears later in the sequence. If the input sequence is indexed
by time, then AutoregressiveNN is strictly causal – current output only
depends on previous inputs.

As expressed below, we can view AutoregressiveNN as a collection of
networks [NN(8) ]8 , potentially sharing parameters, that can be executed in
parallel. This is illustrated in Figure �.�.

C1 , log B1 = constant
C2 , log B2 = NN

(1)
 (z1)

. . .

C8 , log B8 = NN
(8�1)
 (z8�1)

. . .

9>>>>>>=
>>>>>>;
, t, log s = AutoregressiveNN(z) (�.�)

As a consequence of the strict causality property, both %C8/%I9 and %B8/%I9
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Figure �.�: Autoregressive Flow (inverse).
Red arrows represent learned functions
parametrized by neural networks.

are 0 whenever 8  9, which further implies that %G8/%I9 = 0 for 8 < 9:

G8 = C8 + B8 I8 ,

)%G8
%I9

=
%C8
%I9|{z}

=0 for 8 9

+ %B8
%I9|{z}

=0 for 8 9

I8 +
%I8
%I9|{z}

=0 for 8<9
=1 for 8=9

B8 =
⇢

0 8 < 9

B8 8 = 9

.

This leads to a lower diagonal Jacobian matrix � = %x/%z with easy to
compute determinant:

�(z) =

266666666664

B1 0 . . . 0 0
%G2
%I1

B2 . . . 0 0
.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

%G#�1
%I1

%G#�1
%I2

. . . B#�1 0
%G#
%I1

%G#
%I2

. . .
%G#
%I#�1

B#

377777777775
log |det �(z)| =

X
8

log B8

Connection to affine coupling layer

A closer inspection of Equation �.� and Figure �.� reveals that autore-
gressive flow can be viewed as a composition of # affine coupling layers
that transform one element of the input at a time. Specifically, the first
layer splits input z unevenly into z#�1 and I# , leave z#�1 unchanged,
and transform I# into G# ; next layer repeats this process by focusing on
z#�1. In general, we can express the operation of one of the coupling
layers as:

z8�1 , I8 = split(z8)
C8 , log B8 = NN

(8�1)
 (z8�1)

G8 = B8 I8 + C8
output = concat(z8�1 , G8)

Since the inputs of these affine coupling layers do not dependent on the
output of one another, they can be executed in parallel. This parallelism,
however, comes at a cost of a slow serialized inverse.

Inverse of autoregressive flow

While its forward direction can be computed with a single execution
of AutoregressiveNN, the inverse of an autoregressive flow is much
slower to evaluate.

I8 = (G8 � C8)/B8

Since C8 and B8 depends on z8�1, we need to first obtain z8�1 before ob-
taining I8 . To obtain all# elements of z, we need to compute NN1

 , NN
2
 , . . .

sequentially in a serialized fashion, where each evaluation of NN8 yields
only one element of z. The inverse operation is depicted in Figure �.�.
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This sequential procedure of the inverse can be prohibitively slow for
problems with very large data dimension.

Summary of autoregressive flow

The properties of autoregressive flow are summarized in the table below.

Condition for
invertibility

Invertible as long as B8 < 0,88

Tractability
of inverse

Inverse is tractable but requires slow sequential evalu-
ation. Forward pass, in contrast, can be evaluated in
parallel.

Log determi-
nant Jacobian

Jacobian matrix is lower-triangular, so log det �6 =P
8
log B8

Table �.�: Summary of autoregressive
flow

In this section we introduced autoregressive flow as a mapping from z
to x, but it can be used to map from x to z as well. Since the inverse of
autoregressive flow is much more costly to compute compared with its
forward pass, we need to careful choose which direction to apply it to,
depending on whether we want to favor density evaluation or sampling
with density. For instance, if we intend to build a model for maximum
likelihood training, then we can use autoregressive flow with x as input to
allow efficient parallel density estimation during training. If instead the
goal is to efficiently sample from a modeled distribution and optionally
evaluate the modeled density of such samples, then it is sensible to use
autoregressive flow in the direction from z to x. This design trade-off is
highlighted in Table �.� below.

x = AF(z) z = AF(x)
density estimation sequential parallel

sampling (with density) parallel sequential

References [�] [��]

Table �.�: Comparison of using autore-
gressive flow to map from z to x, and from
x to z.

In [�], the case of x = AF(z) is branded as Inverse Auto-regressive Flow
(IAF), and used to model approximated posterior in VAE. This is not to
be confused with the inverse of auto-regressive flow transform.

So far we have assumed the existence of an AutoregressiveNN without
discussing its detailed network form. The design of AutoregressiveNN
is an important topic in itself and warrants a separate chapter on its own.
Properly designed, even a single layer of autoregressive transform can be
a quite powerful model. We will dive into more details in Chapter �.

�.�.� Planar flow*

Planar flow is introduced in [�] and defined with the following form:

x = z + u⌘(w)z + 1). (�.�)
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Figure �.�: Planar flow in � dimensional
space. Top: original z space. Middle: pla-
nar flow with identity ⌘(·) is similar to
shear transform; Bottom: with nonlinear
⌘(·), planar flow expands or contracts
space perpendicular to w)z + 1 = 0.

⌘(·) is a nonlinear scalar activation function (e.g., tanh), and  , {u,w, 1}
is the set of learnable parameters. This transform shifts every point z
in the direction of u, by the amount determined by the projection of z
on w. In the degenerated case when ⌘(·) is an identity function, planar
flow can be viewed as a combination of shear and scaling transform, as is
illustrated in the middle figure of Figure �.�, where scaling happens along
the direction of w and shear is applied in the subspace perpendicular
to w. A nonlinear function ⌘(·) then applies non-linear contraction or
expansion along direction of w. In other words, the change in volume
happens perpendicular to the hyper-plane of w)z+1 = 0, which explains
the name planar flow.

The Jacobian of planar flow can be derived as

�(z) = %x
%z

=
%z
%z

+ u
%⌘(w)z + 1)

%z

=
%z
%z

+ u
%⌘(w)z + 1)
%(w)z + 1)

%(w)z + 1)
%z

=I + ⌘0(w)z + 1)|        {z        }
scalar

uw)|{z}
rank-�
matrix

.

The above form is referred to as rank-� perturbation of identity matrix,
and from matrix determinant lemma

matrix determinant lemma

det
⇣
I + uw)

⌘
= 1 + u)w

, its determinant has a closed form
below

det �(z) =det
�
I + ⌘0(w)z + 1)uw)

�
=1 + ⌘0(w)z + 1)u)w.

Note that enforcing �(z) > 0 only guaran-
tees local invertibility (by inverse function
theorem), but not necessarily global invert-
ibility.

In this specific case, though, it can be
shown that �(z) > 0 leads to global invert-
ibility. For details please refer to Appendix
A.�. in [�].

It can be shown that planar flow is invertible as long as the above term
is positive for any z, i.e.,

u)w > � 1
⌘
0 (w)z + 1) .

For typical activation function such as ⌘ = tanhwith maximum derivative
of 1, the above condition can be met with u)w > �1, which can be
enforced with some reparameterization trick.

There are two major limitations of planar flow that prevent it from being
widely applicable: (�) There is no known closed-form inverse. Finding
the inverse requires numerical iteration that is much more inefficient to
evaluate compared to forward pass. (�) More importantly, the expressivity
of a single layer planar flow is severely limited – there are only two vectors
and one scalar {u,w, 1} as its learnable parameter, the nonlinearity of the
entire layer is driven by a single neuron, and it only expands or contracts
space orthogonal to a single hyper-plane.

Sylvester flow as an extension

To remedy the second limitation, [��] [��]: Berg et al. (����), Sylvester Normalizing
Flows for Variational Inference

proposes an extended version of
planar flow named Sylvester flow with the following form

x = z + U⌘(W)z + b).
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Here U and W are learnable matrices with dimension # ⇥ ", b is
a learnable vector with dimension ", and ⌘(·) denotes an activation
function applied element-wise on its input. It removes the single-neuron
limitation by applying " non-linear activations per layer instead of one.
The name originates from the use of Sylvester determinant identity

Sylvester determinant identity

det
⇣
I#⇥# + UW)

⌘
= det

⇣
I"⇥" + W)U

⌘
,

where U and W are # ⇥" matrices.

in the
derivation of its determinant Jacobian

�(z) =%z
%z

+ U
%⌘(W)z + b)
%(W)z + b)

%(W)z + b)
%z

=I#⇥# + Udiag
�
⌘
0(W)z + b)� W)

,

det �(z) =det
�
I"⇥" + diag

�
⌘
0(W)z + b)� W)U

�
.

To ease computation of the above, W and U are parametrized as QR
and QR̃) respectively, where the columns in Q are a set of orthonormal
vectors, and R and R̃ are " ⇥" upper-triangular matrices. This reduces
determinant Jacobian to be det �(z) = Q

8

�
1 + ⌘0

8
(W)z + b)A88 Ã88

�
, where

A88 and Ã88 are 8th diagonal entry of R and R̃. Invertibility is guaranteed when⇣
1 + ⌘0

8
(W)z + b)A88 Ã88

⌘
> 0 for all 8 [��].

The main design component
in Sylvester flow is the parametrization and learning of the orthogonal
matrix Q, which we leave out and refer interested readers to Section �.�
in [��].

Summary of planar flow

The properties of planar flow are summarized in the table below.

Condition for
invertibility

u)w > �1 when tanh is used as activation function.

Tractability
of inverse

Inverse is not tractable.

Determinant
Jacobian

Jacobian matrix has the form of rank-� perturbation of
the identity and its determinant is derived from matrix
determinant lemma.

Table �.�: Summary of planar flow

�.�.� Residual flow*

Residual flow or invertible residual layer [��, ��] is defined in the same
way as a typical residual layer [��]

x = z + A(z) (�.�)

which is the sum of a skip connection z and a learned residual module
A(z). Next we show that a sufficient condition for the residual layer to be
invertible is that A is Lipschitz continuous with the Lipschitz constant,
denoted as Lip(A), less than 1.

Proposition �.�.� x = z+ A(z) is invertible if A(z) is Lipschitz continuous
and the Lipschitz constant of the residual module A, Lip(A), is less than 1.
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Proof. For any given x, let us define a mapping )x(z) , x � A(z), then
we have

| |)x(z1) � )x(z2) | |2 = | |A(z1) � A(z2) | |2
(A is Lipschitz continuous) Lip(A) | |z1 � z2 | |2

Since Lip(A) < 1, the above inequality shows that )x is a contraction
mapping. By Banach fixed-point theorem, we know that there is a unique
fixed point z⇤ satisfying

)x(z⇤) = z⇤.

In other words, for any x, there is a unique z⇤ such that x = z⇤+ A(z⇤).

Banach fixed-point theorem additionally shows that such a fixed point z⇤
can be found by the following iterative procedure with any arbitrary
z(0),

z(=) = )x
�
z(=�1)� = x � A

�
z(=�1)�

,

z(=)
=!1�! z⇤.

Unlike previously introduced invertible layers that rely on certain struc-
tures of Jacobian matrix for the efficient evaluation of its determinant,
the Jacobian of a residual layer takes a general form below

�(z) = %z
%z

+ %A(z)
z

= I + �A(z),

where �A denotes the Jacobian of the residual module A. To compute its
log determinant, we resort to the following matrix identity

log det A =tr log A

log det A = tr log A is the matrix version
of log

Q
8 08 =

P
log 08 .

where the matrix logarithm is defined as

log(I + A) =
1X
:=1

(�1):+1 A:

:

.

By combining the above three equations, we can express the log determi-
nant into an infinite sum The trace tr is a linear operator, hence it

commutes with summation ⌃.

log det � = tr log(I + �A) = tr

 
1X
:=1

(�1):+1 �
:

A

:

!
=

1X
:=1

(�1):+1 tr
�
�
:

A

�
:

. (�.�)

A truncated sum with finite terms can be used as a biased approximation
[��] [��]: Behrmann et al. (����), Invertible

Residual Networks
of the true log determinant Jacobian, or an unbiased estimation can

be obtained using a Russian roulette estimator [��].

Enforcement of Lipschitz constraint

From Proposition �.�.� we know that ensuring invertibility translates to
enforcing Lipschitz constraint on the residual module A . Specifically, we
want to be able to train A with some optimization objective while at this



� Normalizing Flows ��

��: If an element-wise activation function
0 has maximum derivative of 1, then it
has Lipschitz constant of 1 with arbitrary
length vector at any p-norm.

| | 0(x) � 0(y) | | ?

=

 X
8

�
0(G8) � 0(H8))

�
?

!1/?


 X
8

�
G8 � H8)

�
?

!1/?

= | |x � y | | ?

same time make sure that its Lipschitz constant is strictly less than �. The
immediate next question is how to enforce such constraint.

First we should note that in general the residual module is a multi-layer
network, which can be expressed as a sequence of function composition
A = A

(1) � A(2) � . . . � A(;) � . . . where A(8) is either a non-linear activation
function or a linear operation such as convolution or fully connected
layer. It can be easily verified that the Lipschitz constant of A is upper
bounded by the product of the Lipschitz constant of each individual
layer, that is

Lip(A) <
Y
;

Lip(A(;)).

Therefore, Lip(A) < 1 can be achieved by enforcing Lip(A(;))  1 for each
individual layer and Lip(A(;)) < 1 for at least one layer.

For most element-wise activation functions (ReLU, tanh, ELU, Sigmoid)
that have a maximum derivative of 1, its Lipschitz constant is 1. �� . As
non-element-wise non-linearity, softmax is known to be Lipschitz 1 [��],
and it is easy to show that the same is true for max-pool.

Any linear operation can be expressed as a matrix multiplication 5 (x) =
Wx. As we can see below, the spectral norm of W, i.e., the largest singular
value of W, is the smallest Lipschitz constant of 5 .

| |W | |2 , max
x<0

| |Wx| |2
| |x| |2

= max
x,y,x<y

| |W(x � y)| |2
| |x � y| |2

) | |Wx � Wy | |2  | |W | |2 | |x � y | |2

Thus, we reduce the problem of ensuring invertibility of the residual layer
as the problem of regularizing the spectral norm of linear operations in
residual module A. We end the discussion by noting that constraining
the spectral norm of linear layers is a useful technique that is needed
under many contexts, and refer interested readers to [��–��].

Summary of residual flow

Condition for
invertibility

A is Lipschitz continuous with Lipschitz constant less
than 1

Tractability
of inverse

There is no closed-form inverse. Inverse can be obtained
through a fixed point iteration.

Determinant
Jacobian

log determinant Jacobian can be expressed as an infi-
nite sum involving Jacobian of A (Equation �.�) and
approximated with a finite sum.

Table �.�: Summary of residual flow

�.�.� Comparison and remarks

So far we have gone over four popular invertible layers in normalizing
flows, and detailed their characteristics in terms of condition for invert-
ibility, tractability of inverse and the derivation of determinant Jacobian
matrix. Their comparison is summarized in Table �.�.
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One thing to stress is that even though the layers are introduced as a
mapping from z, the base distribution, to x, the target distribution, it is
merely a choice of exposition. They can very well be applied from x to z
as well.

Note, however, that except for affine coupling which is symmetric in
its forward and inverse in terms of computational complexity, the rest
three have clear polarity in terms of forward and inverse tractability or
computational complexity. Specifically, the inverse of auto-regressive flow
is much slower to evaluate compared to its forward direction; and the
exact inverses of planar flow and residual flow are simply intractable.

Because of this polarity, in practice, we need to carefully choose the direc-
tion at which to apply these transforms. For example, if autoregressive
flow is applied as a mapping from x to z, then we know that computing
the density for given sample x is efficient but the sampling of x can be
slow. Conversely, if it is applied by mapping z to x, then sampling from
the target distribution (as well as obtaining density for such samples)
can be executed efficiently, but obtaining the density of a given sample x
is a slow sequential process. In essence, which direction to apply these
transforms depends on the application of interests, as detailed in Section
�.�.

Table �.�: Comparison of four types of flow layers covered in this section in terms of the tractability of their determinant Jacobian, and
forward and inverse complexity. Intractable ones are marked as gray.

Type of flow Jacobian forward inverse

Affine coupling
lower triangular

log det � =
P

log diag(�)
Forward and inverse share the same form.

Both are tractable and easy to evaluate.

Autoregressive
flow

lower triangular

log det � =
P

log diag(�)
Single forward pass of
AutoregressiveNN

# sequential evaluations of
AutoregressiveNN

(much slower than forward)

Planar flow

I + A, where rank(A) = 1

matrix det. lemma:
det

�
I + uw)

�
= 1 + u)w

Need to evaluate a linear layer
with a single output activation.
(limited expressiveness due to
the single-neuron bottleneck)

Intractable.
Can be approximated with
some numerical iteration.

Residual flow

I + A, where | |A| |2 < 1

log det � =P1
:=1(�1):+1tr

�
A:

� /:
Typical residual layer.

residual module must have a
Lipschitz constant less than �.

Intractable.
Can be approximated with

a fixed-point iteration.

�.� Network architectures

In this section, we introduce engineering practises of building normaliz-
ing flow networks. Out of the four basic building blocks introduced in the
last section, we limit our focus to affine coupling layer, which is arguably
the most widely adopted. Autoregressive flow is itself an important topic,
and often regarded as a separate class of generative modeling. For that
reason we treat it separately in Chapter �.
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Figure �.��: Multi-scale architecture.
Block with dotted edge represents tensor
and with solid edge represent flow lay-
ers. Dashed line represent skip connection
(identity transform). The split of output
after each block of flow layers is also often
referred to as factor out operation.

�.�.� Multi-scale architecture

Individual flow layer tends to have limited capacity due to the invertibility
constraint, and thus to achieve adequate expressive power we need to
rely on building deeper networks. For this reason it is not uncommon to
have normalizing flow networks that are more than ��� layers deep.

One property of invertible layers is that input and output dimension stay
the same. Therefore, if the invertible layers are naively stacked on top of
one another, the size of the activation tensor, no matter how deep it is,
necessarily remains the same as the original input after each layer, as
there is no dimension reduction from any flow layers. This, coupled with
the fact that normalizing flows are normally deep, leads to a network
design that can be very heavy in both memory and compute.

To limit the network size, a multi-scale architecture is proposed by [��] [��]: Dinh et al. (����), Density estimation
using Real NVP

and
soon gets adopted by many mature flow network designs [��, ��], where
half of the activation tensor of certain intermediate layers is factored out
as direct output without future processing, where the rest goes through
additional flow layers. Specifically, the network is divided into ! blocks
of concatenated flow layers, where the output of flow block 5; is factored
into two equal size tensors z; and h; . z; is directly treated as part of output
and h; serves as input to downstream blocks. Figure �.�� illustrates the
case of ! = 4.

(z8 , h8) = 58(h8�1), for 8 = 1, 2, . . . , ! � 1 and
z! = 5!(h!�1), where

h0 ,x

z ,concat (z1 , z2 , . . . , z!) .

The successive halving of activation sizes allows the complexity of the
flow network to scale well with increased depth, and enables building
deep network with good expressiveness. It also brings two additional
benefits [��]:
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multiple levels of representation

Since the final output comprises of segments that go through different
number of layers, they can form different levels of representation. In-
tuitively speaking, high-frequency local details in the original input x
tend to have smaller degree of correlation across different input elements.
Hence it is easier for them to be transformed and decorrelated into inde-
pendent components through a smaller number of flow layers compared
to the low-frequency counterpart. One would expect z1 and z! to capture
the finest and coarsest scale information, respectively.

For image application, there is empirical evidence that this multi-scale
architecture, when coupled with a prior that is auto-regressive across
different scales z1 , z2 , . . . , z!, achieves the decomposition of different
levels of details [��].

distributing loss at different layers of the network

One practical benefit of collecting outputs at various level of the network
is that it allows gradient from the loss term to be distributed across
intermediate layers, providing guidance at different depth levels of the
network.

�.�.� Other applications of invertible networks

The need for invertibility also arises in areas other than generative
modeling.

One advantage of using invertible architecture is that it allows one to
trade off computation complexity for reduced memory consumption
during training. Specifically, back-propagation can be done without
storing activations in the intermediate layers, as they can be recomputed
in the reverse order given the final output��

��: Often a non-invertible head is is
needed on top of the invertible backbone
to obtain output in a certain dimension.
In such a case, the last activation in the in-
vertible segment of the network still needs
to be stored.

[��, ��] [��]: Gomez et al. (����), The Reversible
Residual Network: Backpropagation Without
Storing Activations
[��]: Chang et al. (����), Reversible
Architectures for Arbitrarily Deep Residual
Neural Networks

. This can become
advantageous when there is need to compute gradient in a memory-
constrained device.

Another desirable property of invertible architecture is that it preserves
information of the input. It can be helpful in analyzing learned represen-
tation in the context of adversarial robustness [��] [��]: Jacobsen et al. (����), Excessive

Invariance Causes Adversarial Vulnerability
.

�.�.� Glow: a case study

In this subsection, we take a look at Glow[��] [��]: Kingma et al. (����), Glow: Generative
Flow with Invertible �x� Convolutions

, a well-known multi-scale
normalizing flow architecture for the generative modeling of images,
which uses affine coupling as its basic nonlinear invertible transform.

As introduced in Section �.�.�, in an affine coupling layer, half of the
input dimensions remain intact and get passed directly as part of output,
with the other half going through an affine transform. The parameters
of the affine transform are obtained as a learnable function of the first
half of input. Since the first half remains unchanged, the affine transform
parameters can be obtained in both directions, which then allows the
layer to be easily inverted.

Since half of the input dimensions remain unchanged for a single layer,
to device meaningful invertible network we necessarily need to permute
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or shuffle the activation in between affine coupling layers. There are two
design aspects: (�) how to divide tensor into two halves (�) how to shuffle
the activation dimensions in between successive affine coupling layers.

In the design of NICE [�] [�]: Dinh et al. (����), ‘NICE: Non-linear
Independent Components Estimation’

, the input image is flattened as a �-dimensional
array. The two halves of the input correspond to even and odd components
in the �-d array, and are alternated in successive affine coupling layers,
i.e., the part that remains unchanged in one layer is transformed in
the next. In RealNVP[��] [��]: Dinh et al. (����), Density estimation

using Real NVP
, the multiple-scale architecture is proposed

and the input is either divided along the channel-dimension or spatial-
dimension following a checkerboard pattern. Specifically, in each scale,
the input first goes through three affine coupling layers with alternating
checkerboard masks, followed by a space-to-depth operator that packs
spatial dimension into channel dimension, and then three affine coupling
layers with alternating channel-wise masking.

Glow [��] further generalizes the fixed shuffling scheme in NICE [�] and
RealNVP [��] to a learnable invertible �x� convolution. It inherited the
multi-scale architecture used in RealNVP, and in each scale, the input
first goes through an space-to-depth (a.k.a. squeeze) operation, followed
by  flow steps, where each step is composed of a �x� convolution layer,
which is invertible whenever the parameter matrix in the �x� convolution
is full-rank, and a affine coupling layer with the input divided in channel
dimension. For details please see Figure �.�� and the pseudo code right
below.
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Figure �.��: Multi-scale architecture with
squeeze and factor out (split).

import torch
from torch import nn

class ActNorm(nn.Module):
def __init__(self, ch):
super().__init__()
self.t = nn.Parameter(
torch.zeros(1, ch))

self.s = nn.Parameter(
torch.ones(1, ch))

def logdet(self, x):
_, _, h, w = x.shape
one_pix = self.s.abs().log().sum()
return h * w * one_pix

def forward(self, x, reverse=False):
if reverse:
output = x / self.s - self.t
return output, -self.logdet(x)

else:
output = self.s * (x + self.t)
return output, self.logdet(x)

class Inv1x1Conv(nn.Module):
def __init__(self, ch):
super().__init__()
w = torch.zeros((ch, ch))
w = nn.init.orthogonal_(w)
self.w = nn.Parameter(w)

def logdet(self, x):
_, _, h, w = x.shape
one_pix = \
torch.linalg.slogdet(self.w)[1]

return h * w * one_pix

def forward(self, x, reverse=False):
w = self.w
if reverse: w = w.inverse()
output = nn.functional.\
conv2d(x, w[..., None, None])

if reverse:
return output, self.logdet(x)

else:
return output, - self.logdet(x)

class AffineCoupling(nn.Module):
def __init__(self, ch, hid=512):
super().__init__()
self.nn = nn.Sequential(
nn.Conv2d(
ch // 2, hid, 3, padding=1),

nn.ReLU(),
nn.Conv2d(hid, hid, 1),
nn.Conv2d(hid, ch, 3, padding=1))

def forward(self, x, reverse=False):
x_a, x_b = x.chunk(chunks=2, dim=1)
log_s, t = self.nn(x_a).chunk(
chunks=2, dim=1)

s = torch.exp(log_s)
if reverse:
output_b = (x_b - t) / s
logdet = - log_s.sum()

else:
output_b = x_b * s + t
logdet = log_s.sum()

output = torch.cat(
[x_a, output_b], dim=1)

return output, logdet



� Normalizing Flows ��

�.� Continuous normalizing flows*

So far in our discussion the flow networks are built by stacking a discrete
number of invertible layers. It turns out that for the case of residual flow
layers, there is a way to generalize the concept of discrete layers into a
continuous one, which we introduce in this section.

�.�.� Neural ODE

Neural ODE [��] [��]: Chen et al. (����), Neural Ordinary
Differential Equations

is built on the insight that network with a sequence of
residual layers can be thought of as Euler method in solving an ordinary
differential equation (ODE).

z1 = z0 + NN0(z)
z2 = z1 + NN1(z1)
. . .

9>>=
>>;
�! %zC

%C
= NNC (zC)

So instead of specifying a residual network with a discrete sequence of
hidden layers NN= and hidden state z= , Neural ODE defines a continuous-
depth network by parametrizing the derivative of the hidden state zC
with a neural network, denoted as A(z, C),

%zC
%C

= A(zC , C). (�.�)

The input to the network is z0 and the output is z) for a predetermined
).

Picard–Lindelöf theorem states that if A(z, C) is Lipschitz continuous Lipschitz continuous is a stronger form of
uniform continuous.
Uniform continuity:
8&, 9⇣, s.t.8x, y with | |x � y| | <
⇣,we have | | 5 (x) � 5 (y)| | < &.
Lipschitz continuity:
9 , s.t.8x, y, we have | | 5 (x) � 5 (y)| | <
 | |x � y| |

in
z and continuous in C, then for any given time C0 and any initial value
zC0 – referred to as an initial value – the solution to the above ODE is
unique. Uniqueness of the solution given an initial value implies that the
network is invertible, as it suggests that for a given z0, z) is unique and
vice versa.

Note that different from residual flow described in Section �.�.� which
requires Lipschitz constant of the residual module to be less than �
for invertibility, a Neural ODE is invertible so long as A is Lipschitz
continuous in z, without imposing any constraint on the exact value of
the Lipschitz constant. This can be seen by expressing zC as its first order
Taylor expansion

zC+& =zC + &
%zC
%C

+ >(&)
=zC + &A (zC , C) + >(&), (�.��)

which has the same form as the residual flow in Equation �.�. If we
ignore the second order term, then from Proposition �.�.� we know that
the mapping is invertible as long as &A has Lipschitz constant smaller
than 1. Since & can be arbitrarily small, we just need A to be Lipschitz
continuous to guarantee invertibility.
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�.�.� Change of variables formula for ODE

By treating this first order Taylor expansion in Equation �.�� as a dis-
cretized step of the ODE, and applying the change of variable formula in
Proposition �.�.�, we obtain

?(zC+&) =?(zC)
����det %zC+&

%zC

����
log ?(zC+&) = log ?(zC) � log

����det %zC+&
%zC

����
(0)
= log ?(zC) � log det

✓
I + &

%A
%zC

+ >(&)
◆

(1)
= log ?(zC) � tr log

✓
I + &

%A
%zC

+ >(&)
◆

(2)
= log ?(zC) � tr

©≠≠
´

1X
:=1

(�1):+1

⇣
& %A
%zC + >(&)

⌘
:

:

™ÆÆ
¨

(3)
= log ?(zC) � &tr

✓
%A
%zC

◆
+ >(&).

log det(I + A) =tr log(I + A)

=tr
1X
:=1

(�1):+1 A:

:

=
1X
:=1

(�1):+1 tr
�
A:

�
:

Step (a) follows from Equation �.��. We remove the absolute sign assum-
ing that & is small enough such that the determinant is positive; step (b)
applies matrix identity of log det A = tr log A (which has a scalar analog
of log

Q
=

P
log); step (c) is the definition of matrix logarithm; and in

step (d) the higher order terms are collapsed in >(&).
By dividing both side of the equation by & and take the limit of & ! 0, we
obtain below the continuous version of the change of variable equation,

log ?(zC+&) � ?(zC)
&

= � tr
✓
%A
%zC

◆
+ >(&)

&

) %?(zC)
%C

= � tr
✓
%A
%zC

◆
,

which is formally stated in the proposition below

Proposition �.�.� (Instantaneous change of variable formula) For an
ODE %zC

%C = A(zC , C), where A(z, C) is Lipschitz continuous in z and
continuous in C, the log density of zC follows the following ODE

%?(zC)
%C

= �tr
✓
%A
%zC

◆

By combining the above change of variable formula with Equation �.�, we
can obtain an ODE with extended state space that captures the evolution
of both the hidden state zC itself and its log density log ?(zC).

%
%C


zC

log ?(zC)

�
=


A(zC , C)

�tr (%A/%zC)

�
.

An interesting contrast between discrete change of variable formula
(Proposition �.�.�) and its instantaneous counterpart (Proposition �.�.�)
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is that the former requires computation of the determinant of the Jacobian
matrix of the neural network that captures the transform, while the latter
requires computation of the trace of the Jacobian matrix of the neural
network that captures the derive of the hidden state (i.e., A). Thus, we
should favor the design of A whose trace of Jacobian is easy to compute,
preferably in closed-form.

In [��], the authors propose A(z, C) = u⌘(w)z+ 1), which can be viewed
as a continuous form of the planar flow defined in Equation �.�. The
trace of its Jacobian has a closed form below. trace operation is invariant under cyclic

permutations

tr(AB) = tr(BA)tr
✓
%A
%z

◆
=tr

✓
u
%⌘(w)z + 1)
%(w)z + 1)

%w)z + 1
%z

◆
=

=tr
�
⌘
0(w)u + 1)uw)

�
=⌘0(w)u + 1)w)u

It is worth noting that in the continuous version, we do not need to
enforce additional condition for invertibility – as long as ⌘() is Lipschitz
continuous, as is the case for most of the non-linear activation functions,
invertibility is guaranteed. Similarly, one can generalize Sylvester flow
defined in Section �.�.� to its continuous ODE version with closed-form
trace Jacobian, which we omit here.

�.� Summary

In this chapter we introduced normalizing flows based model for the
learning of continuous multi-dimensional distributions. The modeled
distribution is obtained by transforming a simple base distribution
through a learned non-linear invertible transform. The density of the
modeled distribution is linked to that of the base distribution through
the change of variable formula. The log-determinant-Jacobian term in the
formula accounts for the rate of dilution or concentration of the densities
incurred by the transform.

Two design constraints of normalizing flow networks are: (�) they have to
be invertible (�) their determinant Jacobians should be easy to compute.
Early literature focus on introducing various types of base layers that
trade off flexibility and tractability [�–��, ��, ��, ��]. Mature network
designs often adopt coupling layer when bidirectional tractability is
needed [��, ��], and autoregressive flow when only we only need to
evaluate a single direction [�, ��]. These two cases correspond to the two
applications below:

(a) direct modeling of real world data distribution
(b) modeling of approximation posterior in the context of variation

autoencoder

These two are quite different in their tractability requirement of the
network. For the former, we typically need to evaluate the network in
both directions: from X to Z to compute likelihood score during training,
and from Z to X when sampling is needed at inference time. Well-known
solutions in this space [��, ��, ��] follow the recipe of tractable coupling
layer with learned shuffling, the use of very deep networks to achieve
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desired expressiveness, and the multi-scale (factor-out) structure to
control network complexity.

In contrast, for the latter we only need to execute in the direction of base
distribution to the modeled one, which allows us to use transforms that
are unbalanced in the tractability/speed of the two directions. A popular
choice is autoregressive flow, as proposed in [�] [�]: Kingma et al. (����), Improving Varia-

tional Inference with Inverse Autoregressive
Flow

, which we will discuss
in the VAE chapter.

Normalizing flow based generative models come with two notable limi-
tations: (�) There is no dimension reduction. The invertibility constraint
requires the input dimension to be exactly the same as the output di-
mension. (�) They are not immediately applicable for the learning of
discrete distributions. For discrete distributions, the change of variable
formula degenerates to a direct one-to-one mapping of probabilities
mass without the log-det-Jacobian term. Any invertible mapping only
shuffles the discrete probability masses defined in the base distribution,
which limits its expressiveness. There are works that extends normalizing
flow beyond these two limitations: notably in [��] [��]: Brehmer et al. (����), Flows for

simultaneous manifold learning and density
estimation

the authors propose
methods to jointly learn the low-dimensional manifold of the data as well
as the density on the manifold. A discrete version of normalizing flow
is proposed in [��] [��]: Hoogeboom et al. (����), Integer

Discrete Flows and Lossless Compression
(and refined in [��]) where the base distribution is

obtained from a learnable block autoregressive model, with an additive
coupling layer with integer operation.

Food for thought
Question � Can BatchNorm or LayerNorm layers be used in invertible

networks? Can Dropout be applied?

Question � In a network where multiple affine coupling layers are used
with alternating pattern of input (e.g., [�]), how many layers are
needed to allow all dimensions to influence one another?

Question � Is a function invertible if its Jacobian is invertible every-
where?

Question � Why do we need to multiply the log determinant Jacobian
of the �x� convolution by ⌘ ⇥ F in the pseudo code below Figure
�.��?

Question � Is there a one-to-one mapping from R2 to R1 (or more
generally from R< to R= where < < =)? If so, can we use it for
normalizing flows?

Question � What is the relationship between the Lipschitz constant of a
function and its Jacobian?
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